The Topology on the Primitive Ideal Space of Transformation Group C # - Algebras and C.C.R. Transformation Group C # -Algebras

نویسنده

  • Dana P. Williams
چکیده

If (G, 8) is a second countable transformation group and the stability groups are amenable then C*(G, 8) is C.C.R. if and only if the orbits are closed and the stability groups are C.C.R. In addition, partial results relating closed orbits to C.C.R. algebras are obtained in the nonseparable case. In several cases, the topology of the primitive ideal space is calculated explicitly. In particular, if the stability groups are all contained in a fixed abelian subgroup H, then the topology is computed in terms of H and the orbit structure, provided C*(G, 8) and C*(H, 8) are EH-regular. These conditions are automatically met if G is abelian and (G, 8) is second countable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primitive Ideal Space of Ultragraph $C^*$-algebras

In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$  associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $  C^* $-algebra  $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...

متن کامل

A Note on Spectrum Preserving Additive Maps on C*-Algebras

Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.

متن کامل

IDEAL J *-ALGEBRAS

A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...

متن کامل

On the maximal ideal space of extended polynomial and rational uniform algebras

Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...

متن کامل

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007